trading24
Have money to
Make more money

Trading molecules and tracking targets in symbiotic interactions

1.Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod.2007; 70 :461–477. [PubMed]

2.Simmons TL, et al. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc Natl Acad Sci USA.2008; 105 :4587–4594. [PMC free article] [PubMed]

3.Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ. Microbial symbionts of marine invertebrates: Opportunities for microbial biotechnology. J Molec Microbiol Biotechnol.1999; 1 :33–34. [PubMed]

4.Smith DC. Symbiosis research at the end of the millenium. Hydrobiologia.2001; 461 :49–54.

5.Margulis L.The Origin of Eukaryotic Cells.Yale University Press; New Haven: 1971.

6.Wahl M, Mark O. The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar Ecol Prog Ser.1999; 187 :59–66.

7.Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphidsBuchnerasp. APS. Nature.2000; 407 :81–86. [PubMed]

8.Hotopp JC, et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science.2007; 317 :1753–1756. [PubMed]

9.Piel J. Metabolites from symbiotic bacteria. Nat Prod Rep.2004; 21 :519–38. [PubMed]

10.Schmidt EW. From chemical structure to environmental biosynthetic pathways: navigating marine invertebrate-bacteria associations. Trends Biotechnol.2005; 23 :437–440. [PubMed]

11.Visick KL, Foster J, Doino J, McFall-Ngai M, Ruby EG.Vibrio fischeri luxgenes play an important role in colonization and development of the host light organ. J Bacteriol.2000; 182 :4578–4586. [PMC free article] [PubMed]

12.Lopanik N, Lindquist N, Targett N. Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia.2004; 139 :131–139. [PubMed]

13.Kellner RLL, Dettner K. Differential efficacy of toxic pederin in deterring potential arthropod predators ofPaederus(Coleoptera: Staphylinidae) offspring. Oecologia.1996; 107 :293–300.

14.Toshima H, et al. Prevalence of enteric bacteria that inhibit growth of enterohaemorrhagicEscherichia coliO157 in humans. Epidemiol Infect.2007; 135 :110–117. [PMC free article] [PubMed]

15.Lewin RA, Cheng L, editors.Prochloron: A Microbial Enigma.Chapman and Hall; New York: 1989.

16.Fisher CR, Trench RK.In vitrocarbon fixation byProchloronsp. isolated fromDiplosoma virens . Biol Bull.1980; 159 :636–648.

17.Kremer BP, Pardy R, Lewin RA. Carbon fixation and photosynthates ofProchloron , a green alga symbiotic with an ascidian,Lissoclinum patella . Phycologia.1982; 21 :258–263.

18.Griffiths DJ, Thinh LV. Transfer of photosynthetically fixed carbon between the prokaryotic green algaProchloronand its ascidian host. Aust J Mar Freshwater Res.1983; 34 :431–440.

19.Alberte RS, Cheng L, Lewin RA. Characteristics ofProchloronascidian symbioses. 2 Photosynthesis-irradiance relationships and carbon balance of associations from Palau, Micronesia. Symbiosis.1987; 4 :147–170.

20.Dionisiosese ML, Shimada A, Maruyama T, Miyachi S. Carbonic-anhydrase activity ofProchloronsp. isolated from an ascidian host. Arch Microbiol.1993; 159 :1–5.

21.Koike I, Yamamuro M, Pollard PC. Carbon and nitrogen budgets of 2 ascidians and their symbiont,Prochloron , in a yropical seagrass meadow. Aust J Mar Freshwater Res.1993; 44 :173–182.

22.Koike I, Suzuki T. Nutritional diversity of symbiotic ascidians in a Fijian seagrass meadow. Ecol Res.1996; 11 :381–386.

23.Odintsov VS. Nitrogen fixation inProchloron(Prochlorophyta)-ascidian associations — isProchloronresponsible. Endocytobiosis Cell Res.1991; 7 :253–258.

24.Ireland CM, Scheuer PJ. Ulicyclamide and ulithiacyclamide, 2 new small peptides from a marine tunicate. J Am Chem Soc.1980; 102 :5688–5691.

25.Ireland CM, Durso AR, Newman RA, Hacker MP. Anti-neoplastic cyclic peptides from the marine tunicateLissoclinum patella . J Org Chem.1982; 47 :1807–1811.

26.Degnan BM, et al. New cyclic peptides with cytotoxic activity from the ascidianLissoclinum patella . J Med Chem.1989; 32 :1349–1354. [PubMed]

27.Schmidt EW, et al. Patellamide A and C biosynthesis by a microcin-like pathway inProchloron didemni , the cyanobacterial symbiont ofLissoclinum patella . Proc Natl Acad Sci USA.2005; 102 :7315–7320. [PMC free article] [PubMed]

28.Donia M, et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat Chem Biol.2006; 2 :729–735. [PubMed]

29.Adams BJ, et al. Biodiversity and systematics of nematode-bacterium entomopathogens. Biol Cont.2006; 37 :32–49.

30.Brusca RC, Brusca GJ, Haver NJ.Invertebrates.Sinauer Associates; Sunderland, Massachusetts: 2003.

31.Coghlan A. Nematode genome evolution. WormBook.2005:1–15. [PMC free article] [PubMed]

32.Goodrich-Blair H, Clarke DJ. Mutualism and pathogenesis inXenorhabdusandPhotorhabdus : two roads to the same destination. Mol Microbiol.2007; 64 :260–268. [PubMed]

33.Paul VJ, Frautschy S, Fenical W, Nealson KH. Antibiotics in microbial ecology. J Chem Ecol.1981; 7 :589–597. [PubMed]

34.Richardson WH, Schmidt TM, Nealson KH. Identification of an anthraquinone pigment and a hydroxystilbene antibiotic fromXenorhabdus luminescens . Appl Environ Microbiol.1988; 54 :1602–1605. [PMC free article] [PubMed]

35.Joyce SA, et al. Bacterial biosynthesis of a multipotent stilbene. Angew Chem Intl Ed.2008; 47 :1942–1945. [PubMed]

36.Pettit GR, et al. Isolation and structure of bryostatin 1. J Am Chem Soc.1982; 104 :6846–6848.

37.Kortmansky J, Schwartz GK. Bryostatin-1: a novel PKC inhibitor in clinical development. Cancer Invest.2003; 21 :924–936. [PubMed]

38.Woollacott RM. Association of bacteria with bryozoans larvae. Mar Biol (New York)1981; 65 :155–158.

39.Haygood MG, Davidson SK. Small-subunit rRNA genes andin situhybridization with oligonucleotides specific for the bacterial symbionts in the larvae of the bryozoanBugula neritinaand proposal of “ Candidatusendobugula sertula” Appl Environ Microbiol.1997; 63 :4612–4616. [PMC free article] [PubMed]

40.Kerr RG, Lawry J, Gush KA.In vitrobiosynthetic studies of the bryostatins, anti-cancer agents from the marine bryozoanBugula neritina . Tetrahedron Lett.1996; 37 :8305–8308.

41.Davidson SK, Allen SW, Lim GE, Anderson CM, Haygood MG. Evidence for the biosynthesis of bryostatins by the bacterial symbiont “ CandidatusEndobugula sertula” of the bryozoanBugula neritina . Appl Environ Microbiol.2001; 67 :4531–4537. [PMC free article] [PubMed]

42.Hildebrand M, et al.bryA : an unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina . Chem Biol.2004; 11 :1543–1552. [PubMed]

43.Sudek S, et al. Identification of the putative bryostatin polyketide synthase gene cluster from “ CandidatusEndobugula sertula”, the uncultivated microbial symbiont of the marine bryozoanBugula neritina . J Nat Prod.2007; 70 :67–74. [PubMed]

44.Lim GE, Regali LA, Haygood M. Evolutionary relationships ofEndoubugulabacterial symbionts and theirBugulabryozoan hosts. Appl Environ Microbiol.2008epub.[PMC free article] [PubMed]

45.Sharp KH, Davidson SK, Haygood MG. Localization of‘CandidatusEndobugula sertula’ and the bryostatins throughout the life cycle of the bryozoanBugula neritina . ISME J.2007; 1 :693–702. [PubMed]

46.Pavan M, Bo G. Pederin, toxic principle obtained in the crystalline state from the beetlePaederus fuscipes . Curt Phys Comp Oecol.1953; 3 :307–312.

47.Kellner RLL. Horizontal transmission of biosynthetic capabilities for pederin inPaederus melanurus(Coleoptera: Staphylinidae) Chemoecology.2001; 11 :127–130.

48.Piel J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont ofPaederusbeetles. Proc Natl Acad Sci USA.2002; 99 :14002–14007. [PMC free article] [PubMed]

49.Chapela IH, Rehner SA, Schultz TR, Mueller UG. Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science.1994; 266 :1691–1694. [PubMed]

50.Mueller UG, Rehner SA, Schultz TR. The evolution of agriculture in ants. Science.1998; 281 :2034–2038. [PubMed]

51.Schlick-Steiner BC, et al. Specificity and transmission mosaic of ant nest-wall fungi. Proc Natl Acad Sci USA.2008; 105 :940–943. [PMC free article] [PubMed]

52.Poulsen M, Boomsma JJ. Mutualistic fungi control crop diversity in fungus-growing ants. Science.2005; 307 :741–744. [PubMed]

53.Currie CR, Poulsen M, Mendenhall J,

Boomsma JJ, Billen J. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science.2006; 311 :81–83. [PubMed]

54.Gerardo NM, Jacobs SR, Currie CR, Mueller UG. Ancient host-pathogen associations maintained by specificity of chemotaxis and antibiosis. Plos Biol.2006; 4 :1358–1363. [PMC free article] [PubMed]

55.Currie CR, Scott JA, Summerbell RC, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites (vol 398, pg 701, 1999) Nature.2003; 423 :461–461.

56.Currie CR, Scott JA, Summerbell RC, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature.1999; 398 :701–704.

57.Currie CR, Mueller UG, Malloch D. The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA.1999; 96 :7998–8002. [PMC free article] [PubMed]

58.Riley MA, Chavan MA, editors.Bacteriocins: Ecology and Evolution.Springer; New York: 2007.

59.Roush RF, Nolan EM, Lohr F, Walsh CT. Maturation of anEscherichia coliribosomal peptide antibiotic by ATP-consuming N-P bond formation microcin C7. J Am Chem Soc.2008; 130 :3063–3069. [PubMed]

60.Zamble DB, McClure CP, Penner-Hahn JE, Walsh CT. The McbB component of microcin B17 synthetase is a zinc metalloprotein. Biochemistry.2000; 39 :16190–16199. [PubMed]

61.Li YM, Milne JC, Madison LL, Kolter R, Walsh CT. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science.1996; 274 :1188–1193. [PubMed]

62.Adams J, Kinney T, Thompson S, Rubin L, Helling RB. Frequency-dependent selection for plasmid-containing cells ofEscherichia coli . Genetics.1979; 91 :627–637. [PMC free article] [PubMed]

63.Chao L, Levin BR. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA.1981; 78 :6324–6328. [PMC free article] [PubMed]

64.Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol.2002; 56 :117–137. [PubMed]

65.Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of gram-positive bacteria. Bacteriol Rev.1976; 40 :722–756. [PMC free article] [PubMed]

66.Riley MA, Goldstone CM, Wertz JE, Gordon DA. phylogenetic approach to assessing the targets of microbial warfare. J Evol Biol.2003; 16 :690–697. [PubMed]

67.Gordon DM, Oliver E, Littlefield-Wyer J. In:Bacteriocins: Ecology and Evolution.Riley MA, Chavan MA, editors. Springer; New York: 2007. pp. 5–18.

68.Devireddy LR, Gazin C, Zhu X, Green MR. A Cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell.2005; 123 :1293–1305. [PubMed]

69.Nguyen T, et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol.2008; 26 :225–233. [PubMed]

70.Piel J, et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine spongeTheonella swinhoei . Proc Natl Acad Sci USA.2004; 101 :16222–16227. [PMC free article] [PubMed]

71.Kawaide H. Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci Biotechnol Biochem.2006; 70 :583–590. [PubMed]

72.Eyberger AL, Dondapati R, Porter JR. Endophyte fungal isolates fromPodophyllum peltatumproduce podophyllotoxin. J Nat Prod.2006; 69 :1121–1124. [PubMed]

73.Puri SC, Verma V, Amna T, Qazi GN, Spiteller M. An endophytic fungus fromNothapodytes foetidathat produces camptothecin. J Nat Prod.2005; 68 :1717–1719. [PubMed]

74.Jennewein S, Wildung MR, Chau M, Walker K, Croteau R. Random sequencing of an inducedTaxuscell cDNA library for identification of clones involved in Taxol biosynthesis. Proc Natl Acad Sci USA.2004; 101 :9149–9154. [PMC free article] [PubMed]

75.Williams DC, et al. Intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to the taxadiene precursor of taxol catalyzed by recombinant taxadiene synthase. Chem Biol.2000; 7 :969–977. [PubMed]

76.Zhou X, et al. Screening of taxol-producing endophytic fungi fromTaxus chinensis var. mairei . Prikl Biokhim Mikrobiol.2007; 43 :490–494. [PubMed]

77.Wang J, et al. Taxol fromTuberculariasp. strain TF5, an endophytic fungus ofTaxus mairei . FEMS. Microbiol Lett.2000; 193 :249–253. [PubMed]

78.Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ. Endophytic taxol-producing fungi from bald cypress,Taxodium distichum . Microbiology.1996; 142 :2223–2226. [PubMed]

79.Strobel G, et al. Taxol fromPestalotiopsis microspora , an endophytic fungus ofTaxus wallachiana . Microbiology.1996; 142 :435–440. [PubMed]

80.Stierle A, Strobel G, Stierle D. Taxol and taxane production byTaxomyces andreanae , an endophytic fungus of Pacific yew. Science.1993; 260 :214–216. [PubMed]

81.Fujii I. In:Comprehensive Natural Products Chemistry.Barton DNK, Meth-Cohn O, editors. Elsevier; New York: 1999. pp. 409–441.

82.Poeaknapo C, Schmidt J, Brandsch M, Drager B, Zenk MH. Endogenous formation of morphine in human cells. Proc Natl Acad Sci USA.2004; 101 :14091–14096. [PMC free article] [PubMed]

83.Donia MS, Ravel J, Schmidt EW. A global assembly line for cyanobactins. Nat Chem Biol.2008; 4 :341–343. [PMC free article] [PubMed]

84.Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG. Identification of the antifungal peptide-containing symbiont of the marine spongeTheonella swinhoeias a novel delta-proteobacterium, “ CandidatusEntotheonella palauensis” Mar Biol.2000; 136 :969–977.

85.Schmidt EW, Bewley CA, Faulkner DJ. Theopalauamide, a bicyclic glycopeptide from filamentous bacterial symbionts of the lithistid spongeTheonella swinhoeifrom Palau and Mozambique. J Org Chem.1998; 63 :1254–1258.

86.Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev.2007; 71 :295–347. [PMC free article] [PubMed]

87.Bruck WM, Sennett SH, Pomponi SA, Willenz P, McCarthy PJ. Identification of the bacterial symbiontEntotheonellasp. in the mesohyl of the marine spongeDiscodermiasp. ISME J.2008; 2 :335–339. [PubMed]

88.Schirmer A, et al. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine spongeDiscodermia dissoluta . Appl Environ Microbiol.2005; 71 :4840–4849. [PMC free article] [PubMed]

89.Carroll AR, et al. Patellins 1–6 and trunkamide A: Novel cyclic hexa-, hepta- and octa-peptides from colonial ascidians,Lissoclinumsp. Aust J Chem.1996; 49 :659–667.

90.Salomon CE, Faulkner DJ. Localization studies of bioactive cyclic peptides in the ascidianLissoclinum patella . J Nat Prod.2002; 65 :689–692. [PubMed]

91.Long PF, Dunlap WC, Battershill CN, Jaspars M. Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieve sustained metabolite production. Chembiochem.2005; 6 :1760–1765. [PubMed]

92.Jones BV, Marchesi JR. Transposon-aided capture (TRACA) of plasmids resident in the human gut mobile metagenome. Nat Methods.2007; 4 :55–61. [PubMed]

93.Jones BV, Marchesi JR. Accessing the mobile metagenome of the human gut microbiota. Mol Biosyst.2007; 3 :749–758. [PubMed]

94.Casas V, et al. Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in Southern California. FEMS Microbiol Lett.2006; 261 :141–139. [PubMed]

95.Dinsdale EA, et al. Functional metagenomic profiling of nine biomes. Nature.2008; 452 :629–632. [PubMed]

96.Andrianasolo EH, et al. Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Org Lett.2005; 7 :1375–1378. [PubMed]

97.Bewley CA, Holland ND, Faulkner DJ. Two classes of metabolites fromTheonella swinhoeiare localized in distinct populations of bacterial symbionts. Experientia.1996; 52 :716–722. [PubMed]

98.Chavan M, Rafi H, Wertz J, Goldstone C, Riley MA. Phage associated bacteriocins reveal a novel mechanism for bacteriocin diversification inKlebsiella . J Mol Evol.2005; 60 :546–556. [PubMed]

99.Wertz JE, Riley MA. Chimeric nature of two plasmids ofHafnia alveiencoding the bacteriocins alveicins A and B. J Bacteriol.2004; 186 :1598–1605. [PMC free article] [PubMed]


Category: Trading

Similar articles: