Have money to
Make more money

Trading molecules and tracking targets in symbiotic interactions

1.Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod.2007; 70 :461–477. [PubMed]

2.Simmons TL, et al. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc Natl Acad Sci USA.2008; 105 :4587–4594. [PMC free article] [PubMed]

3.Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ. Microbial symbionts of marine invertebrates: Opportunities for microbial biotechnology. J Molec Microbiol Biotechnol.1999; 1 :33–34. [PubMed]

4.Smith DC. Symbiosis research at the end of the millenium. Hydrobiologia.2001; 461 :49–54.

5.Margulis L.The Origin of Eukaryotic Cells.Yale University Press; New Haven: 1971.

6.Wahl M, Mark O. The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar Ecol Prog Ser.1999; 187 :59–66.

7.Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphidsBuchnerasp. APS. Nature.2000; 407 :81–86. [PubMed]

8.Hotopp JC, et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science.2007; 317 :1753–1756. [PubMed]

9.Piel J. Metabolites from symbiotic bacteria. Nat Prod Rep.2004; 21 :519–38. [PubMed]

10.Schmidt EW. From chemical structure to environmental biosynthetic pathways: navigating marine invertebrate-bacteria associations. Trends Biotechnol.2005; 23 :437–440. [PubMed]

11.Visick KL, Foster J, Doino J, McFall-Ngai M, Ruby EG.Vibrio fischeri luxgenes play an important role in colonization and development of the host light organ. J Bacteriol.2000; 182 :4578–4586. [PMC free article] [PubMed]

12.Lopanik N, Lindquist N, Targett N. Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia.2004; 139 :131–139. [PubMed]

13.Kellner RLL, Dettner K. Differential efficacy of toxic pederin in deterring potential arthropod predators ofPaederus(Coleoptera: Staphylinidae) offspring. Oecologia.1996; 107 :293–300.

14.Toshima H, et al. Prevalence of enteric bacteria that inhibit growth of enterohaemorrhagicEscherichia coliO157 in humans. Epidemiol Infect.2007; 135 :110–117. [PMC free article] [PubMed]

15.Lewin RA, Cheng L, editors.Prochloron: A Microbial Enigma.Chapman and Hall; New York: 1989.

16.Fisher CR, Trench RK.In vitrocarbon fixation byProchloronsp. isolated fromDiplosoma virens . Biol Bull.1980; 159 :636–648.

17.Kremer BP, Pardy R, Lewin RA. Carbon fixation and photosynthates ofProchloron , a green alga symbiotic with an ascidian,Lissoclinum patella . Phycologia.1982; 21 :258–263.

18.Griffiths DJ, Thinh LV. Transfer of photosynthetically fixed carbon between the prokaryotic green algaProchloronand its ascidian host. Aust J Mar Freshwater Res.1983; 34 :431–440.

19.Alberte RS, Cheng L, Lewin RA. Characteristics ofProchloronascidian symbioses. 2 Photosynthesis-irradiance relationships and carbon balance of associations from Palau, Micronesia. Symbiosis.1987; 4 :147–170.

20.Dionisiosese ML, Shimada A, Maruyama T, Miyachi S. Carbonic-anhydrase activity ofProchloronsp. isolated from an ascidian host. Arch Microbiol.1993; 159 :1–5.

21.Koike I, Yamamuro M, Pollard PC. Carbon and nitrogen budgets of 2 ascidians and their symbiont,Prochloron , in a yropical seagrass meadow. Aust J Mar Freshwater Res.1993; 44 :173–182.

22.Koike I, Suzuki T. Nutritional diversity of symbiotic ascidians in a Fijian seagrass meadow. Ecol Res.1996; 11 :381–386.

23.Odintsov VS. Nitrogen fixation inProchloron(Prochlorophyta)-ascidian associations — isProchloronresponsible. Endocytobiosis Cell Res.1991; 7 :253–258.

24.Ireland CM, Scheuer PJ. Ulicyclamide and ulithiacyclamide, 2 new small peptides from a marine tunicate. J Am Chem Soc.1980; 102 :5688–5691.

25.Ireland CM, Durso AR, Newman RA, Hacker MP. Anti-neoplastic cyclic peptides from the marine tunicateLissoclinum patella . J Org Chem.1982; 47 :1807–1811.

26.Degnan BM, et al. New cyclic peptides with cytotoxic activity from the ascidianLissoclinum patella . J Med Chem.1989; 32 :1349–1354. [PubMed]

27.Schmidt EW, et al. Patellamide A and C biosynthesis by a microcin-like pathway inProchloron didemni , the cyanobacterial symbiont ofLissoclinum patella . Proc Natl Acad Sci USA.2005; 102 :7315–7320. [PMC free article] [PubMed]

28.Donia M, et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat Chem Biol.2006; 2 :729–735. [PubMed]

29.Adams BJ, et al. Biodiversity and systematics of nematode-bacterium entomopathogens. Biol Cont.2006; 37 :32–49.

30.Brusca RC, Brusca GJ, Haver NJ.Invertebrates.Sinauer Associates; Sunderland, Massachusetts: 2003.

31.Coghlan A. Nematode genome evolution. WormBook.2005:1–15. [PMC free article] [PubMed]

32.Goodrich-Blair H, Clarke DJ. Mutualism and pathogenesis inXenorhabdusandPhotorhabdus : two roads to the same destination. Mol Microbiol.2007; 64 :260–268. [PubMed]

33.Paul VJ, Frautschy S, Fenical W, Nealson KH. Antibiotics in microbial ecology. J Chem Ecol.1981; 7 :589–597. [PubMed]

34.Richardson WH, Schmidt TM, Nealson KH. Identification of an anthraquinone pigment and a hydroxystilbene antibiotic fromXenorhabdus luminescens . Appl Environ Microbiol.1988; 54 :1602–1605. [PMC free article] [PubMed]

35.Joyce SA, et al. Bacterial biosynthesis of a multipotent stilbene. Angew Chem Intl Ed.2008; 47 :1942–1945. [PubMed]

36.Pettit GR, et al. Isolation and structure of bryostatin 1. J Am Chem Soc.1982; 104 :6846–6848.

37.Kortmansky J, Schwartz GK. Bryostatin-1: a novel PKC inhibitor in clinical development. Cancer Invest.2003; 21 :924–936. [PubMed]

38.Woollacott RM. Association of bacteria with bryozoans larvae. Mar Biol (New York)1981; 65 :155–158.

39.Haygood MG, Davidson SK. Small-subunit rRNA genes andin situhybridization with oligonucleotides specific for the bacterial symbionts in the larvae of the bryozoanBugula neritinaand proposal of “ Candidatusendobugula sertula” Appl Environ Microbiol.1997; 63 :4612–4616. [PMC free article] [PubMed]

40.Kerr RG, Lawry J, Gush KA.In vitrobiosynthetic studies of the bryostatins, anti-cancer agents from the marine bryozoanBugula neritina . Tetrahedron Lett.1996; 37 :8305–8308.

41.Davidson SK, Allen SW, Lim GE, Anderson CM, Haygood MG. Evidence for the biosynthesis of bryostatins by the bacterial symbiont “ CandidatusEndobugula sertula” of the bryozoanBugula neritina . Appl Environ Microbiol.2001; 67 :4531–4537. [PMC free article] [PubMed]

42.Hildebrand M, et al.bryA : an unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina . Chem Biol.2004; 11 :1543–1552. [PubMed]

43.Sudek S, et al. Identification of the putative bryostatin polyketide synthase gene cluster from “ CandidatusEndobugula sertula”, the uncultivated microbial symbiont of the marine bryozoanBugula neritina . J Nat Prod.2007; 70 :67–74. [PubMed]

44.Lim GE, Regali LA, Haygood M. Evolutionary relationships ofEndoubugulabacterial symbionts and theirBugulabryozoan hosts. Appl Environ Microbiol.2008epub.[PMC free article] [PubMed]

45.Sharp KH, Davidson SK, Haygood MG. Localization of‘CandidatusEndobugula sertula’ and the bryostatins throughout the life cycle of the bryozoanBugula neritina . ISME J.2007; 1 :693–702. [PubMed]

46.Pavan M, Bo G. Pederin, toxic principle obtained in the crystalline state from the beetlePaederus fuscipes . Curt Phys Comp Oecol.1953; 3 :307–312.

47.Kellner RLL. Horizontal transmission of biosynthetic capabilities for pederin inPaederus melanurus(Coleoptera: Staphylinidae) Chemoecology.2001; 11 :127–130.

48.Piel J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont ofPaederusbeetles. Proc Natl Acad Sci USA.2002; 99 :14002–14007. [PMC free article] [PubMed]

49.Chapela IH, Rehner SA, Schultz TR, Mueller UG. Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science.1994; 266 :1691–1694. [PubMed]

50.Mueller UG, Rehner SA, Schultz TR. The evolution of agriculture in ants. Science.1998; 281 :2034–2038. [PubMed]

51.Schlick-Steiner BC, et al. Specificity and transmission mosaic of ant nest-wall fungi. Proc Natl Acad Sci USA.2008; 105 :940–943. [PMC free article] [PubMed]

52.Poulsen M, Boomsma JJ. Mutualistic fungi control crop diversity in fungus-growing ants. Science.2005; 307 :741–744. [PubMed]

53.Currie CR, Poulsen M, Mendenhall J,

Boomsma JJ, Billen J. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science.2006; 311 :81–83. [PubMed]

54.Gerardo NM, Jacobs SR, Currie CR, Mueller UG. Ancient host-pathogen associations maintained by specificity of chemotaxis and antibiosis. Plos Biol.2006; 4 :1358–1363. [PMC free article] [PubMed]

55.Currie CR, Scott JA, Summerbell RC, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites (vol 398, pg 701, 1999) Nature.2003; 423 :461–461.

56.Currie CR, Scott JA, Summerbell RC, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature.1999; 398 :701–704.

57.Currie CR, Mueller UG, Malloch D. The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA.1999; 96 :7998–8002. [PMC free article] [PubMed]

58.Riley MA, Chavan MA, editors.Bacteriocins: Ecology and Evolution.Springer; New York: 2007.

59.Roush RF, Nolan EM, Lohr F, Walsh CT. Maturation of anEscherichia coliribosomal peptide antibiotic by ATP-consuming N-P bond formation microcin C7. J Am Chem Soc.2008; 130 :3063–3069. [PubMed]

60.Zamble DB, McClure CP, Penner-Hahn JE, Walsh CT. The McbB component of microcin B17 synthetase is a zinc metalloprotein. Biochemistry.2000; 39 :16190–16199. [PubMed]

61.Li YM, Milne JC, Madison LL, Kolter R, Walsh CT. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science.1996; 274 :1188–1193. [PubMed]

62.Adams J, Kinney T, Thompson S, Rubin L, Helling RB. Frequency-dependent selection for plasmid-containing cells ofEscherichia coli . Genetics.1979; 91 :627–637. [PMC free article] [PubMed]

63.Chao L, Levin BR. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA.1981; 78 :6324–6328. [PMC free article] [PubMed]

64.Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol.2002; 56 :117–137. [PubMed]

65.Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of gram-positive bacteria. Bacteriol Rev.1976; 40 :722–756. [PMC free article] [PubMed]

66.Riley MA, Goldstone CM, Wertz JE, Gordon DA. phylogenetic approach to assessing the targets of microbial warfare. J Evol Biol.2003; 16 :690–697. [PubMed]

67.Gordon DM, Oliver E, Littlefield-Wyer J. In:Bacteriocins: Ecology and Evolution.Riley MA, Chavan MA, editors. Springer; New York: 2007. pp. 5–18.

68.Devireddy LR, Gazin C, Zhu X, Green MR. A Cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell.2005; 123 :1293–1305. [PubMed]

69.Nguyen T, et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol.2008; 26 :225–233. [PubMed]

70.Piel J, et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine spongeTheonella swinhoei . Proc Natl Acad Sci USA.2004; 101 :16222–16227. [PMC free article] [PubMed]

71.Kawaide H. Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci Biotechnol Biochem.2006; 70 :583–590. [PubMed]

72.Eyberger AL, Dondapati R, Porter JR. Endophyte fungal isolates fromPodophyllum peltatumproduce podophyllotoxin. J Nat Prod.2006; 69 :1121–1124. [PubMed]

73.Puri SC, Verma V, Amna T, Qazi GN, Spiteller M. An endophytic fungus fromNothapodytes foetidathat produces camptothecin. J Nat Prod.2005; 68 :1717–1719. [PubMed]

74.Jennewein S, Wildung MR, Chau M, Walker K, Croteau R. Random sequencing of an inducedTaxuscell cDNA library for identification of clones involved in Taxol biosynthesis. Proc Natl Acad Sci USA.2004; 101 :9149–9154. [PMC free article] [PubMed]

75.Williams DC, et al. Intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to the taxadiene precursor of taxol catalyzed by recombinant taxadiene synthase. Chem Biol.2000; 7 :969–977. [PubMed]

76.Zhou X, et al. Screening of taxol-producing endophytic fungi fromTaxus chinensis var. mairei . Prikl Biokhim Mikrobiol.2007; 43 :490–494. [PubMed]

77.Wang J, et al. Taxol fromTuberculariasp. strain TF5, an endophytic fungus ofTaxus mairei . FEMS. Microbiol Lett.2000; 193 :249–253. [PubMed]

78.Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ. Endophytic taxol-producing fungi from bald cypress,Taxodium distichum . Microbiology.1996; 142 :2223–2226. [PubMed]

79.Strobel G, et al. Taxol fromPestalotiopsis microspora , an endophytic fungus ofTaxus wallachiana . Microbiology.1996; 142 :435–440. [PubMed]

80.Stierle A, Strobel G, Stierle D. Taxol and taxane production byTaxomyces andreanae , an endophytic fungus of Pacific yew. Science.1993; 260 :214–216. [PubMed]

81.Fujii I. In:Comprehensive Natural Products Chemistry.Barton DNK, Meth-Cohn O, editors. Elsevier; New York: 1999. pp. 409–441.

82.Poeaknapo C, Schmidt J, Brandsch M, Drager B, Zenk MH. Endogenous formation of morphine in human cells. Proc Natl Acad Sci USA.2004; 101 :14091–14096. [PMC free article] [PubMed]

83.Donia MS, Ravel J, Schmidt EW. A global assembly line for cyanobactins. Nat Chem Biol.2008; 4 :341–343. [PMC free article] [PubMed]

84.Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG. Identification of the antifungal peptide-containing symbiont of the marine spongeTheonella swinhoeias a novel delta-proteobacterium, “ CandidatusEntotheonella palauensis” Mar Biol.2000; 136 :969–977.

85.Schmidt EW, Bewley CA, Faulkner DJ. Theopalauamide, a bicyclic glycopeptide from filamentous bacterial symbionts of the lithistid spongeTheonella swinhoeifrom Palau and Mozambique. J Org Chem.1998; 63 :1254–1258.

86.Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev.2007; 71 :295–347. [PMC free article] [PubMed]

87.Bruck WM, Sennett SH, Pomponi SA, Willenz P, McCarthy PJ. Identification of the bacterial symbiontEntotheonellasp. in the mesohyl of the marine spongeDiscodermiasp. ISME J.2008; 2 :335–339. [PubMed]

88.Schirmer A, et al. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine spongeDiscodermia dissoluta . Appl Environ Microbiol.2005; 71 :4840–4849. [PMC free article] [PubMed]

89.Carroll AR, et al. Patellins 1–6 and trunkamide A: Novel cyclic hexa-, hepta- and octa-peptides from colonial ascidians,Lissoclinumsp. Aust J Chem.1996; 49 :659–667.

90.Salomon CE, Faulkner DJ. Localization studies of bioactive cyclic peptides in the ascidianLissoclinum patella . J Nat Prod.2002; 65 :689–692. [PubMed]

91.Long PF, Dunlap WC, Battershill CN, Jaspars M. Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieve sustained metabolite production. Chembiochem.2005; 6 :1760–1765. [PubMed]

92.Jones BV, Marchesi JR. Transposon-aided capture (TRACA) of plasmids resident in the human gut mobile metagenome. Nat Methods.2007; 4 :55–61. [PubMed]

93.Jones BV, Marchesi JR. Accessing the mobile metagenome of the human gut microbiota. Mol Biosyst.2007; 3 :749–758. [PubMed]

94.Casas V, et al. Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in Southern California. FEMS Microbiol Lett.2006; 261 :141–139. [PubMed]

95.Dinsdale EA, et al. Functional metagenomic profiling of nine biomes. Nature.2008; 452 :629–632. [PubMed]

96.Andrianasolo EH, et al. Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Org Lett.2005; 7 :1375–1378. [PubMed]

97.Bewley CA, Holland ND, Faulkner DJ. Two classes of metabolites fromTheonella swinhoeiare localized in distinct populations of bacterial symbionts. Experientia.1996; 52 :716–722. [PubMed]

98.Chavan M, Rafi H, Wertz J, Goldstone C, Riley MA. Phage associated bacteriocins reveal a novel mechanism for bacteriocin diversification inKlebsiella . J Mol Evol.2005; 60 :546–556. [PubMed]

99.Wertz JE, Riley MA. Chimeric nature of two plasmids ofHafnia alveiencoding the bacteriocins alveicins A and B. J Bacteriol.2004; 186 :1598–1605. [PMC free article] [PubMed]

Category: Trading

Similar articles: